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ABSTRACT 
In this paper we introduce the application of a new 
statistical modeling algorithm called Rule Ensembles to the 
problem of yield-loss characterization. Yield loss modeling 
is viewed as a regression or classification problem, and a 
model is constructed as a linear combination of simple 
rules derived from the data. These rule ensembles have 
been shown to produce predictive models competitive with 
the best methods.  In addition to their high accuracy, 
however, these rules are easy to understand. Similarly, the 
degree of relevance of each rule, and its respective 
variables, can be assessed.  The algorithm also provides 
methodology for automatically identifying those variables 
that are involved in interactions with other variables, and 
the strength and degrees of those interactions. To illustrate 
the interpretation advantages of the method, an analysis on 
semiconductor manufacturing data is provided. 

KEYWORDS: Yield-loss characterization, decision trees, 
regression, classification, predictive learning, ensembles. 

1. INTRODUCTION 
The predictive learning problem is stated as follows [1]: 
one is given a “training” data base of N “observations” 
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where iji xy , are measured values of attributes (properties, 
characteristics) on an object, and D  is considered to be a 
random sample from some joint (population) distribution. 
The quantity y  is called the “output” (or “response”) 
variable, and x  are referred to as the “input” (or 
“predictor”) variables. The goal is to build a functional 
model  
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that offers an adequate and interpretable description of how 
the inputs affect the output.  

Interpretation involves gaining an understanding of those 
particular input variables that are most influential on the 
response, and the nature of the dependence of the model on 
those influential inputs.  

In the semiconductor domain, the response variable is yield 
and the predictors correspond to yield management 
variables of lots or wafers (e.g., tool used at each 
processing step).  To the extent that the model F  

qualitatively reflects the true relationship between input 
and output variables, the information provided by the 
interpretation process can shed light into the factors 
contributing to yield loss and help prioritize yield 
improvement efforts. 

The remainder of this paper is organized as follows: 
Section 2 gives a short overview of decision trees, their 
strengths and limitations, and their variable importance 
scoring scheme. Section 3 provides a brief description of 
boosting and tree ensembles. Section 4 introduces the new 
approach of rule ensembles. Section 5 presents an analysis 
on real data, and is followed by concluding remarks. 

2. DECISION TREE METHODS 
Decision Trees [2,3] are a popular non-linear data mining 
method that has proven useful in the problem of yield-loss 
characterization, and nowadays are available within yield 
management software tools (e.g., PDF’s dataPower™). 
Tree-based methods partition the space of all joint values of 
the input variables into a set of (hyper) rectangles, and then 
fit a simple model (like a constant) in each one. Partitions 
are constructed with a series of straight-line boundaries, as 
in Figure 1, perpendicular to the axis of the input variable 
being used.  

 

Figure 1: Artificial 2-class data – i.e., y ∈ {high_yield, 
low_yield}, and a partition induced in the 2-dimensional 
input space by the tree on the right. 
 

If we have a partition into M regions, MRR ,,1 … , and the 
response within each region is a constant mc , our predictive 
model has the form ∑ =

∈=
M

m mm RIcF
1

)()( xx , where )(⋅I  is 

an indicator of the truth of its argument.  Variable 
interactions are hinted by the presence of multiple variables 
in the top- (root node) to-bottom (terminal nodes) paths in 
the tree. This is, however, not a sufficient condition, as 
different such paths can combine to substantially reduce, or 
eliminate, the interaction effect as reflected in the overall 
model.  
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It is easy to see that any decision tree has an equivalent 
representation as a set of conjunctive “rules”, one for each 
terminal node. Each rule is given by the product of the 
indicator functions associated with all the edges on the path 
from the root to the terminal node (see Table 1).  

)5()(1 ≥= TIIr x  
})3,2,1{()5()(2 MMMPEITIIr ∉⋅≥=x  

)2(})3,2,1{()5()(3 ≥⋅∉⋅≥= TIIMMMPEITIIr x
)2(})3,2,1{()5()(4 <⋅∉⋅≥= TIIMMMPEITIIr x

 
Table 1: the tree of Figure 1 represented by rules. 
 

Despite their conceptual simplicity, decision trees are very 
powerful and remain a popular off-the-shelf data mining 
method. Their appeal can be explained in terms of a 
number of desirable characteristics. Trees can naturally 
handle mixed variable types (categorical and continuous) 
and missing values. Thus, one can easily combine 
parametric and process equipment data in the yield 
analysis. They are invariant under monotone 
transformations of the individual input variables, and thus 
largely immune to bad input distributions (e.g., outliers). 
This avoids the need for re-scaling and other data 
preprocessing operations. They are relatively fast to 
construct, which allows working with voluminous wafer-, 
or die-, level data.  They produce interpretable – i.e., easy 
to read, models (see Figure 1). Finally, they perform 
internal variable subset selection as an integral part of the 
tree construction procedure. They are thereby resistant to 
the inclusion of many irrelevant predictor variables [1]. 
Thus, trees can be effectively used to identify key yield 
factors from among hundreds, or thousands, of parameters. 

Relative Importance of Input Variables 
Which input variables are the most important? Obviously, 
the variables selected in the final tree are deemed the most 
relevant – i.e., they have a substantial influence on the 
response. It is often useful, however, to learn the relative 
importance of those variables that, while not giving the best 
split of a node, may give the second or third best.  Consider 
the simple data of Table 2: we observe that a single node 
tree, with the split test 1CCCPE =−  (see Figure 2), can 
perfectly partition the data into the GOOD  and BAD  
groups.  
 

Yield PE - BB PE - CC PE - DD PE - EE 
BAD B2 C1 D1 E1 
BAD B1 C1 D2 E1 
BAD B2 C1 D1 E1 
BAD B1 C1 D2 E1 
BAD B2 C1 D1 E1 
GOOD B1 C2 D2 E1 
GOOD B2 C2 D1 E2 
GOOD B1 C2 D2 E2 
GOOD B2 C2 D1 E2 
GOOD B1 C2 D2 E2 

 
Table 2: Sample yield data with 10 observations and 4 
input (categorical) variables. 
 

Variable EEPE −  doesn’t occur in this tree; yet, if 
“masking” variable CCPE −  is removed and another tree 
grown, EEPE −  would be selected, and the resulting tree 
would be almost as accurate as the original.  In such a 
situation, we would like the “importance” of EEPE −  to 
be close to that of CCPE − .  
 
The theory of decision trees provides a methodology for 
deriving a variable ranking that allows for the detection of 
masking variables [2]. The relevance measure is based on 
the contribution of each variable to error reduction during 
the process of building the tree. The relevance scores are 
relative to a given tree – i.e., they might change if the data 
is modified and a different tree is built, and thus it is 
customary to assign the largest a value of 100 and then 
scale the others accordingly (see Figure 2). 

 

 

 
 

Figure 2: Simple decision tree for the data of Table 2, and 
corresponding (relative) variable importance scores. 

 

Tree Limitations 
Despite their long list of desirable characteristics, trees are 
not necessarily universally better, and themselves suffer 
from some limitations. Tree structure can be unstable: 
resort the data a little bit, re-grow the tree, and one might 
get a second tree very different from the first (although in 
practice tree instability is often limited to a few of the lower 
nodes).  Trees produce a coarse piecewise-constant 
approximation to the true, but unknown, target 
function )(* xF  (think of a linear function approximated by 
a staircase-like function). Trees suffer from data 
fragmentation: as each node splits, the children nodes have 
less data to work with. This is particularly problematic if 
our data matrix is very “wide” – i.e., it has many more 
columns than rows. Finally, trees are biased towards high 
interaction order approximations (because interactions 
enter the model through root-to-terminal node paths 
involving more than one input variable). Recently, a new 
technique has emerged that fixes these limitations at the 
expense of some interpretability loss: boosted decision trees 
[4, 5, 6].  Interpretability is then enhanced by replacing the 
trees with rules. 

3. BOOSTED TREES 
The basic idea is to combine the outputs from many trees to 
produce a more robust and accurate “committee,” or 
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“ensemble,” decision. More formally, a linear combination 
of (many) small trees is used instead of just one single tree 

∑ =
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where each )(xmT  is a decision tree. Thus, boosting can be 
understood as an algorithm for fitting an additive expansion 
in a set of “basis” functions [5, 6].  Additive expansions 
like this are at the core of other learning methods – e.g., 
sigmoids in neural networks, wavelets in signal processing, 
etc. 

How do boosted trees fix single tree limitations?  The 
function approximation is still piecewise constant but by 
combining many more pieces, the approximation is much 
finer; thus, better approximations to smooth target functions 
can be produced.  By averaging over a large set of small 
trees, the variance of the estimate produced by a single 
large tree is reduced.  Data fragmentation is no longer an 
issue as the trees in the model are small (e.g., 6-8 terminal 
nodes), and every new tree added to the model uses all the 
data.   

Finally, in boosting decision trees the interaction order of 
the approximation can be controlled by restricting the 
average size J (number of terminal nodes) of the individual 
trees included in the model.  Setting 2=J  results in single 
split trees (“stumps”), and produces models with only main 
effects – i.e., no interactions.  Setting 2>J  permits 
interactions to order 1−J . 

Interpretation 
Although the simple two-dimensional representation 
offered by a single tree is no longer available, a new 
interpretation methodology has been developed for 
ensemble models [5]. A (relative) importance score ranks 
the input variables according to their relevance (see Figure 
3). An interaction statistic allows identification of those 
variables that are involved in interactions with other 
variables, and the strength and degrees of those interactions 
(see Figure 4). And partial dependence plots allow the 
study of how the response variable (i.e., yield) changes as a 
function of the most important variables (see Figure 6).  

The ensemble importance scoring of input variables is a 
simple generalization of the measure initially proposed for 
single trees (the original measure is averaged over the trees 
in the ensemble). Due to the stabilizing effect of averaging, 
the generalized relevance measure turns out to be more 
reliable than its counterpart for a single tree [1]. 

Once the most important variables have been identified, we 
can gain insight into the input-output relationship 
represented by the training data by visualizing the 
dependence of the approximation )(xF  on their joint 
values. For this purpose, partial dependence plots have 
been proposed.  Just like in a trellis plot, where one can 

picture a two-variable function ),( 21 xxF  by showing the 
dependence of the function on 1x  conditioned on the 
respective values of 2x , partial dependence plots are 
intended to visualize the effect on )(xF  of  a small subset 
of the important input variables Sx  after accounting for the 
(average) effects of the other (“complement”) variables  Cx  
– i.e., CS xxx ∪= .  More formally, the partial dependence 
on Sx  is defined as ),()( CSSS FF

C
xxx XΕ=  and is 

estimated by 

∑ =
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where },,{ 1 NCC xx … are the values of Cx occurring in the 
training data [1].  

Partial dependence plots can be used to help interpret 
models produced by any “black box” method.  In the case 
of decision trees, however, )(ˆ

SSF x  can be rapidly computed 
from the tree itself without requiring additional passes over 
the data.  For the complete ensemble, the results are 
averaged over all the trees.   

Partial dependence plots can also be used to uncover and 
study interaction effects.  An interaction between ix  and 

kx  is present if the difference in the value of )(xF  for 

different values of ix  depends on the value of kx . 
Conversely, if the shape of the dependence function on 
either variable is unaffected by the value of the other 
variable, then no interaction is assumed. This notion is 
formalized in [8] where a statistic for testing whether a 
specified variable interacts with any other variable is 
defined  

4. RULE ENSEMBLES 
The boosting methodology is not restricted to decision tree 
ensembles. Many types of functions (“base learners”) can 
be combined – e.g., sigmoids, RBFs, etc. Furthermore, base 
learners from different families could be combined, which 
can result in increased accuracy when the different families 
are chosen to complement each other –e.g., trees and linear 
functions.    

For the purpose of interpretation, it is desirable that the 
ensemble be comprised of “simple” rules such as the ones 
defining a decision tree – i.e., each base learner is a 0/1-
valued function of the form  

∏ ∈=
j jmjm sxIxr )()(  

where each js identifies a region of the input space. These 
rules are often defined by a small number of variables and 
thus are easy to understand. 
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Combining the non-linear rules, which allow for the 
modeling of interaction effects, with purely linear terms, 
results in a “hybrid” ensemble model 

∑∑ ==
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The rules can come from many different starting points – 
e.g., using genetic algorithms or other approximate 
optimization approaches, but a natural way would be to 
take advantage of a decision tree ensemble constructed via 
boosting. Once the set of trees M

mT 1)}({ x  has been built, the 
rule set K

kr 1)}({ x  is derived by “decomposing” all trees into 
their constituent rules [8]. Given such a set of rules, the 
coefficients for the linear combination are obtained by a 
regularized linear regression: 
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where the second term is the 1l (lasso) penalty that “shrinks” 
the coefficients towards zero [7]. This step helps produce 
sparse models, with less correlated components, that often 
lead to substantial gains in prediction accuracy.   

5. ANALYSIS OF SEMICONDUCTOR DATA 
In this section we present the application of rule ensembles, 
and the associated interpretational tools developed for them 
in [8], to a yield data set. All experiments were conducted 
using the “RuleFit” implementation for R and internally 
developed software. 

The data consists of 84 lots (2045 wafers) of limited yield 
of one memory failing BIST bin, ranging from 60% to 
96%, each described by 680 input categorical (process 
equipment) and continuous (time) variables (missing values 
are present). The goal is to build a model that can help 
establish if certain machines (or combination of them) at 
certain time at certain process steps cause low yield. 

Table 3 summarizes the estimated test error results for the 
lot- and wafer-level data using three methods: ensembles, 
main effects only model (i.e., using single-variable rules in 
the ensemble), and a single tree build with CART [2]. For 
the ensemble model, the number of terms (rules and linear) 
with nonzero coefficients is also shown.  For the single tree, 
the tree size is given as well. 

 Lot-level Wafer-level

Ensemble model 
    (# terms) 

3.7 
(213) 

0.35 
(220) 

Main effects only model 5.1 0.91

Single tree 
    (# terminal nodes) 

5.5 
(1) 

0.44 
(32) 

 
Table 3: Average absolute prediction error (estimated via 
cross-validation) for different modeling methods applied to 
the yield data. 

The average absolute prediction error for the ensemble 
model is significantly lower than the corresponding error 
for an additive model restricted to main effects only. Thus, 
there is good evidence for interaction effects being present. 
At the lot-level, where the data matrix is “wide,” the best 
single tree was a stump (one terminal node only). Thus, 5.5 
is the error associated with the constant model 

)(ˆ ymeany = , and the ensemble model’s error represents a 
~33% improvement. At the wafer-level, the single tree 
model had 32 terminal nodes and a depth of 7 – i.e., a not 
so easy to read tree. In this case, the ensemble model 
improves the single-tree’s error by ~ 20%. 

Table 4 shows the three globally most important terms in 
the lot- and wafer-level models. For rules, the coefficient 
(Coef) values represent the change in predicted value if the 
rule is satisfied (or “fires”). Support (Supp) refers to the 
fraction of the data to which the rules applies. Thus, rule 1 
of the lot-level model applies to ~27% of the data, and can 
be interpreted as saying that lots for which 
PE.2100.1000.LTH201 is not in {LEQUIP753, LEQUIP755} 
and PE.3730.1000.LTH205 ≠ LEQUIP702 tend to have higher 
yield. 

Imp Coef Supp Lot-level Model Rule

100 1.88 0.27 
PE.2100.1000.LTH201 ∉ {LEQUIP753, LEQUIP755} & 
PE.3730.1000.LTH205 ∉ {LEQUIP702} 

88 -1.49 0.52 PE.2975.1610.WET505 ∉ {CEQUIP702} & 
PE.3940.1500.RI441 ∈ {EEQUIP704, EEQUIP706} 

87 -1.82 0.20 

PE.3760.4000.FRN333 ∈ {DEQUIP701, DEQUIP703} & 
PE.3880.4350.ILTM444 ∈ {YEQUIP702, YEQUIP706, 
                                       YEQUIP707, YEQUIP709} & 
PE.4450.4200.CMP561 ∉ { PEQUIP703} 

Imp Coef Supp Wafer-level Model Rule

100 1.58 0.25 

PE.1550.1000.LTH203 ∈ {LEQUIP754} & 
PE.3560.4720.ILT112 ∉ {YEQUIP704, YEQUIP706, 
                                    YEQUIP710, YEQUIP711} & 
PE.3880.4350.ILTM444∉ {YEQUIP702, YEQUIP706, 
                                      YEQUIP707, YEQUIP709} & 
TI.1850.1805.WETETCH13 ≤ 38620 

89 -1.37 0.27 
PE.3300.0400.WETCFF21 ∈ {SEQUIP702} & 
PE.3670.4200.CMP552 ∉ {PEQUIP702} & 
TI.3230.2115.INS711 ≥ 38620 

71 -1.09 0.29 
PE.2100.1175.ION621 ∉ {IEQUIP703} & 
PE.2450.1040.WETS23 ∉ {CEQUIP704}  & 
PE.3970.4200.CMP554 ∉ {PEQUIP706, PEQUIP707} 

 
Table 4: Top three rules based on global importance for the 
lot- and wafer-level ensemble models for the yield data. 
 

Similarly, rule 2 of the lot-level model applies to ~52% of 
the data, and can be interpreted as saying that lots for which 
PE.2975.1610.WET505 ≠ CEQUIP702 and PE.3940.1500.RI441 
is in {EEQUIP704, EEQUIP706} tend to have lower yield. 

Figure 3 shows the relative importance of the ten most 
important input variables (out of the 680 given ones) of the 
wafer-level model, as averaged over all predictions. 
Variable PE.3880.4350.ILTM444, which is also present in the 
top rules, figures prominently.  An analysis (not shown) of 
the partial dependence of yield on this variable, reveals that 
wafers using YEQUIP707, or YEQUIP709, at step 3880.4350 
tend to have noticeably lower-yield. 
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Figure 3: Input variable relative importance (global) for a 
rule ensemble model built on the yield data. 

 
The analysis of interaction effects can now be focused on 
the smaller set of variables deemed most relevant. The 
yellow bars in Figure 4 show the values of the statistic used 
to test whether a specified variable interacts with any other 
variable. The red bars correspond to the reference (null) 
distribution values. Thus, the height of each yellow bar 
reflects the value of the interaction statistic in excess of its 
expected value under the null hypothesis of no interaction 
effects.  
 
The null (reference) distributions are computed using a 
bootstrap method. The idea is to generate “random” data 
sets that are similar to the original training data, repeatedly 
compute the interaction statistic on these artificial data, and 
compare the resulting values with those obtained from the 
original data. 
 

 

Figure 4: Total interaction strengths in excess of expected 
null value for top-15 input variables. 

 
Although the strengths of the interaction effects shown in 
Figure 4 are not large, at least two of the fifteen most 
influential variables appear to be involved in interactions 
with other variables. After identifying those variables that 
interact with others – e.g., PE.2100.1175.ION621 and 
PE.2550.1000.LTH233 above, we need to determine the 
particular other variables being interacted with.  
 
The values of the two-variable interaction strength statistic 
for PE.2550.1000.LTH233 are shown in Figure 5. Here one 

sees that PE.2550.1000.LTH233 dominantly interacts with 
PE.2997.0100.WETC755.  
 

 
 

Figure 5: Two-variable interaction strengths of variables 
interacting with PE.2550.1000.LTH233. 

 
The detailed nature of the PE.2550.1000.LTH233 interaction 
with PE.2997.0100.WETC755 can be further explored with 
the corresponding partial dependence plot (see Figure 6).  
In the absence of an interaction between these variables, all 
PE.2550.1000.LTH233 partial dependence distributions, 
conditioned on different values of PE.2997.0100.WETC755, 
would be the same.  
 

PE.2997.0100.WETC755 = DEQUIP701 

 
                      PE.2550.1000.LTH233 

PE.2997.0100.WETC755 = DEQUIP702 

 
                      PE.2550.1000.LTH233 
 

PE.2997.0100.WETC755 = DEQUIP703 

 
PE.2550.1000.LTH233 

 
Figure 6: Joint partial dependence on variables 
PE.2550.1000.LTH233 (found earlier to be a relevant 
input) and PE.2997.0100.WETC755. 
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Here one sees similar distributions when 
PE.2997.0100.WETC755 takes the values DEQUIP701 and 
DEQUIP702 (with one PE.2550.1000.LTH233 value not 
represented in one case). The distribution for 
PE.2997.0100.WETC755 = DEQUIP703 is fairly different 
from the others, suggesting it captures the essence of the 
interaction effect between these two variables: yield is 
lower throughout in this case. 
 
We can further visualize the above interaction using 
waferMAP plots (see Figure 7). Figure 7(a) shows average 
yield for the wafers using LEQUIP701 at step 2550.1000 or 
using DEQUIP703 at step 2997.0100. Figure 7(b) shows 
average yield for the “complement” set of wafers. A ~7.5% 
yield loss is observed. 
 

 
(a) 

 

 
(b) 

Figure 7: Wafer map representation of yield. Minimum 
values are represented by darker colored die, graduating 
to lighter die for higher values. In (a), average yield for the 
373 wafers using LEQUIP701 at step 2550.1000 or using 
DEQUIP703 at step 2997.0100. In (b), average yield for 
the remaining 1672 wafers. 

 
 
6. SUMMARY 
Ensemble methods in general, and boosted decision trees in 
particular, constitute one of the most important advances in 
machine learning in recent years. In the absence of detailed 
a priori knowledge of the problem at hand, they provide 
superior performance. A number of interpretation tools 
have been developed that, although applicable to other 
algorithms, often are easier to compute for trees. With the 
introduction of rule ensembles, the interpretability of the 
ensemble model has been further significantly improved. 
Together they provide a solid methodology that is 
applicable to yield loss characterization. 
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