
Yield Modeling with Rule Ensembles

Giovanni Seni, Edward Yang, Said Akar
PDF Solutions

San Jose, CA 95110 USA
E-mail: giovanni.seni@pdf.com, edward.yang@pdf.com, said.akar@pdf.com

ABSTRACT
In this paper we introduce the application of a new
statistical modeling algorithm called Rule Ensembles to the
problem of yield-loss characterization. Yield loss modeling
is viewed as a regression or classification problem, and a
model is constructed as a linear combination of simple
rules derived from the data. These rule ensembles have
been shown to produce predictive models competitive with
the best methods. In addition to their high accuracy,
however, these rules are easy to understand. Similarly, the
degree of relevance of each rule, and its respective
variables, can be assessed. The algorithm also provides
methodology for automatically identifying those variables
that are involved in interactions with other variables, and
the strength and degrees of those interactions. To illustrate
the interpretation advantages of the method, an analysis on
semiconductor manufacturing data is provided.

KEYWORDS: Yield-loss characterization, decision trees,
regression, classification, predictive learning, ensembles.

1. INTRODUCTION
The predictive learning problem is stated as follows [1]:
one is given a “training” data base of N “observations”

},{},,,,{ 121 ii
N

iniii yxxxyD x== "

where iji xy , are measured values of attributes (properties,
characteristics) on an object, and D is considered to be a
random sample from some joint (population) distribution.
The quantity y is called the “output” (or “response”)
variable, and x are referred to as the “input” (or
“predictor”) variables. The goal is to build a functional
model

)(),,,(21 xFxxxFy n == "�

that offers an adequate and interpretable description of how
the inputs affect the output.

Interpretation involves gaining an understanding of those
particular input variables that are most influential on the
response, and the nature of the dependence of the model on
those influential inputs.

In the semiconductor domain, the response variable is yield
and the predictors correspond to yield management
variables of lots or wafers (e.g., tool used at each
processing step). To the extent that the model F

qualitatively reflects the true relationship between input
and output variables, the information provided by the
interpretation process can shed light into the factors
contributing to yield loss and help prioritize yield
improvement efforts.

The remainder of this paper is organized as follows:
Section 2 gives a short overview of decision trees, their
strengths and limitations, and their variable importance
scoring scheme. Section 3 provides a brief description of
boosting and tree ensembles. Section 4 introduces the new
approach of rule ensembles. Section 5 presents an analysis
on real data, and is followed by concluding remarks.

2. DECISION TREE METHODS
Decision Trees [2,3] are a popular non-linear data mining
method that has proven useful in the problem of yield-loss
characterization, and nowadays are available within yield
management software tools (e.g., PDF’s dataPower™).
Tree-based methods partition the space of all joint values of
the input variables into a set of (hyper) rectangles, and then
fit a simple model (like a constant) in each one. Partitions
are constructed with a series of straight-line boundaries, as
in Figure 1, perpendicular to the axis of the input variable
being used.

Figure 1: Artificial 2-class data – i.e., y ∈ {high_yield,
low_yield}, and a partition induced in the 2-dimensional
input space by the tree on the right.

If we have a partition into M regions, MRR ,,1 … , and the
response within each region is a constant mc , our predictive
model has the form ∑ =

∈=
M

m mm RIcF
1

)()(xx , where)(⋅I is

an indicator of the truth of its argument. Variable
interactions are hinted by the presence of multiple variables
in the top- (root node) to-bottom (terminal nodes) paths in
the tree. This is, however, not a sufficient condition, as
different such paths can combine to substantially reduce, or
eliminate, the interaction effect as reflected in the overall
model.

2281-4244-0653-6/07/$20.00 ©2007 IEEE 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference

It is easy to see that any decision tree has an equivalent
representation as a set of conjunctive “rules”, one for each
terminal node. Each rule is given by the product of the
indicator functions associated with all the edges on the path
from the root to the terminal node (see Table 1).

)5()(1 ≥= TIIr x
})3,2,1{()5()(2 MMMPEITIIr ∉⋅≥=x

)2(})3,2,1{()5()(3 ≥⋅∉⋅≥= TIIMMMPEITIIr x
)2(})3,2,1{()5()(4 <⋅∉⋅≥= TIIMMMPEITIIr x

Table 1: the tree of Figure 1 represented by rules.

Despite their conceptual simplicity, decision trees are very
powerful and remain a popular off-the-shelf data mining
method. Their appeal can be explained in terms of a
number of desirable characteristics. Trees can naturally
handle mixed variable types (categorical and continuous)
and missing values. Thus, one can easily combine
parametric and process equipment data in the yield
analysis. They are invariant under monotone
transformations of the individual input variables, and thus
largely immune to bad input distributions (e.g., outliers).
This avoids the need for re-scaling and other data
preprocessing operations. They are relatively fast to
construct, which allows working with voluminous wafer-,
or die-, level data. They produce interpretable – i.e., easy
to read, models (see Figure 1). Finally, they perform
internal variable subset selection as an integral part of the
tree construction procedure. They are thereby resistant to
the inclusion of many irrelevant predictor variables [1].
Thus, trees can be effectively used to identify key yield
factors from among hundreds, or thousands, of parameters.

Relative Importance of Input Variables
Which input variables are the most important? Obviously,
the variables selected in the final tree are deemed the most
relevant – i.e., they have a substantial influence on the
response. It is often useful, however, to learn the relative
importance of those variables that, while not giving the best
split of a node, may give the second or third best. Consider
the simple data of Table 2: we observe that a single node
tree, with the split test 1CCCPE =− (see Figure 2), can
perfectly partition the data into the GOOD and BAD
groups.

Yield PE - BB PE - CC PE - DD PE - EE
BAD B2 C1 D1 E1
BAD B1 C1 D2 E1
BAD B2 C1 D1 E1
BAD B1 C1 D2 E1
BAD B2 C1 D1 E1
GOOD B1 C2 D2 E1
GOOD B2 C2 D1 E2
GOOD B1 C2 D2 E2
GOOD B2 C2 D1 E2
GOOD B1 C2 D2 E2

Table 2: Sample yield data with 10 observations and 4
input (categorical) variables.

Variable EEPE − doesn’t occur in this tree; yet, if
“masking” variable CCPE − is removed and another tree
grown, EEPE − would be selected, and the resulting tree
would be almost as accurate as the original. In such a
situation, we would like the “importance” of EEPE − to
be close to that of CCPE − .

The theory of decision trees provides a methodology for
deriving a variable ranking that allows for the detection of
masking variables [2]. The relevance measure is based on
the contribution of each variable to error reduction during
the process of building the tree. The relevance scores are
relative to a given tree – i.e., they might change if the data
is modified and a different tree is built, and thus it is
customary to assign the largest a value of 100 and then
scale the others accordingly (see Figure 2).

Figure 2: Simple decision tree for the data of Table 2, and
corresponding (relative) variable importance scores.

Tree Limitations
Despite their long list of desirable characteristics, trees are
not necessarily universally better, and themselves suffer
from some limitations. Tree structure can be unstable:
resort the data a little bit, re-grow the tree, and one might
get a second tree very different from the first (although in
practice tree instability is often limited to a few of the lower
nodes). Trees produce a coarse piecewise-constant
approximation to the true, but unknown, target
function)(* xF (think of a linear function approximated by
a staircase-like function). Trees suffer from data
fragmentation: as each node splits, the children nodes have
less data to work with. This is particularly problematic if
our data matrix is very “wide” – i.e., it has many more
columns than rows. Finally, trees are biased towards high
interaction order approximations (because interactions
enter the model through root-to-terminal node paths
involving more than one input variable). Recently, a new
technique has emerged that fixes these limitations at the
expense of some interpretability loss: boosted decision trees
[4, 5, 6]. Interpretability is then enhanced by replacing the
trees with rules.

3. BOOSTED TREES
The basic idea is to combine the outputs from many trees to
produce a more robust and accurate “committee,” or

229

“ensemble,” decision. More formally, a linear combination
of (many) small trees is used instead of just one single tree

∑ =
=

M

m mmTaF
1

)()(xx

where each)(xmT is a decision tree. Thus, boosting can be
understood as an algorithm for fitting an additive expansion
in a set of “basis” functions [5, 6]. Additive expansions
like this are at the core of other learning methods – e.g.,
sigmoids in neural networks, wavelets in signal processing,
etc.

How do boosted trees fix single tree limitations? The
function approximation is still piecewise constant but by
combining many more pieces, the approximation is much
finer; thus, better approximations to smooth target functions
can be produced. By averaging over a large set of small
trees, the variance of the estimate produced by a single
large tree is reduced. Data fragmentation is no longer an
issue as the trees in the model are small (e.g., 6-8 terminal
nodes), and every new tree added to the model uses all the
data.

Finally, in boosting decision trees the interaction order of
the approximation can be controlled by restricting the
average size J (number of terminal nodes) of the individual
trees included in the model. Setting 2=J results in single
split trees (“stumps”), and produces models with only main
effects – i.e., no interactions. Setting 2>J permits
interactions to order 1−J .

Interpretation
Although the simple two-dimensional representation
offered by a single tree is no longer available, a new
interpretation methodology has been developed for
ensemble models [5]. A (relative) importance score ranks
the input variables according to their relevance (see Figure
3). An interaction statistic allows identification of those
variables that are involved in interactions with other
variables, and the strength and degrees of those interactions
(see Figure 4). And partial dependence plots allow the
study of how the response variable (i.e., yield) changes as a
function of the most important variables (see Figure 6).

The ensemble importance scoring of input variables is a
simple generalization of the measure initially proposed for
single trees (the original measure is averaged over the trees
in the ensemble). Due to the stabilizing effect of averaging,
the generalized relevance measure turns out to be more
reliable than its counterpart for a single tree [1].

Once the most important variables have been identified, we
can gain insight into the input-output relationship
represented by the training data by visualizing the
dependence of the approximation)(xF on their joint
values. For this purpose, partial dependence plots have
been proposed. Just like in a trellis plot, where one can

picture a two-variable function),(21 xxF by showing the
dependence of the function on 1x conditioned on the
respective values of 2x , partial dependence plots are
intended to visualize the effect on)(xF of a small subset
of the important input variables Sx after accounting for the
(average) effects of the other (“complement”) variables Cx
– i.e., CS xxx ∪= . More formally, the partial dependence
on Sx is defined as),()(CSSS FF

C
xxx XΕ= and is

estimated by

∑ =
=

N

i iCSSS xF
N

F
1

),(1)(ˆ xx

where },,{ 1 NCC xx … are the values of Cx occurring in the
training data [1].

Partial dependence plots can be used to help interpret
models produced by any “black box” method. In the case
of decision trees, however,)(ˆ

SSF x can be rapidly computed
from the tree itself without requiring additional passes over
the data. For the complete ensemble, the results are
averaged over all the trees.

Partial dependence plots can also be used to uncover and
study interaction effects. An interaction between ix and

kx is present if the difference in the value of)(xF for

different values of ix depends on the value of kx .
Conversely, if the shape of the dependence function on
either variable is unaffected by the value of the other
variable, then no interaction is assumed. This notion is
formalized in [8] where a statistic for testing whether a
specified variable interacts with any other variable is
defined

4. RULE ENSEMBLES
The boosting methodology is not restricted to decision tree
ensembles. Many types of functions (“base learners”) can
be combined – e.g., sigmoids, RBFs, etc. Furthermore, base
learners from different families could be combined, which
can result in increased accuracy when the different families
are chosen to complement each other –e.g., trees and linear
functions.

For the purpose of interpretation, it is desirable that the
ensemble be comprised of “simple” rules such as the ones
defining a decision tree – i.e., each base learner is a 0/1-
valued function of the form

∏ ∈=
j jmjm sxIxr)()(

where each js identifies a region of the input space. These
rules are often defined by a small number of variables and
thus are easy to understand.

230

Combining the non-linear rules, which allow for the
modeling of interaction effects, with purely linear terms,
results in a “hybrid” ensemble model

∑∑ ==
++=

n

j jj
K

k kk xbraaF
110)()(xx .

The rules can come from many different starting points –
e.g., using genetic algorithms or other approximate
optimization approaches, but a natural way would be to
take advantage of a decision tree ensemble constructed via
boosting. Once the set of trees M

mT 1)}({ x has been built, the
rule set K

kr 1)}({ x is derived by “decomposing” all trees into
their constituent rules [8]. Given such a set of rules, the
coefficients for the linear combination are obtained by a
regularized linear regression:

()
()∑∑

∑ ∑∑

==

= ==

++

++=

n

j j
K

k k

N

i

n

j ijj
K

k ikki
ba

jk

ba

xbraayLba
jk

11

1 110
}{},{

)(,minarg})ˆ{},ˆ({

λ

x

where the second term is the 1l (lasso) penalty that “shrinks”
the coefficients towards zero [7]. This step helps produce
sparse models, with less correlated components, that often
lead to substantial gains in prediction accuracy.

5. ANALYSIS OF SEMICONDUCTOR DATA
In this section we present the application of rule ensembles,
and the associated interpretational tools developed for them
in [8], to a yield data set. All experiments were conducted
using the “RuleFit” implementation for R and internally
developed software.

The data consists of 84 lots (2045 wafers) of limited yield
of one memory failing BIST bin, ranging from 60% to
96%, each described by 680 input categorical (process
equipment) and continuous (time) variables (missing values
are present). The goal is to build a model that can help
establish if certain machines (or combination of them) at
certain time at certain process steps cause low yield.

Table 3 summarizes the estimated test error results for the
lot- and wafer-level data using three methods: ensembles,
main effects only model (i.e., using single-variable rules in
the ensemble), and a single tree build with CART [2]. For
the ensemble model, the number of terms (rules and linear)
with nonzero coefficients is also shown. For the single tree,
the tree size is given as well.

 Lot-level Wafer-level

Ensemble model
 (# terms)

3.7
(213)

0.35
(220)

Main effects only model 5.1 0.91

Single tree
 (# terminal nodes)

5.5
(1)

0.44
(32)

Table 3: Average absolute prediction error (estimated via
cross-validation) for different modeling methods applied to
the yield data.

The average absolute prediction error for the ensemble
model is significantly lower than the corresponding error
for an additive model restricted to main effects only. Thus,
there is good evidence for interaction effects being present.
At the lot-level, where the data matrix is “wide,” the best
single tree was a stump (one terminal node only). Thus, 5.5
is the error associated with the constant model

)(ˆ ymeany = , and the ensemble model’s error represents a
~33% improvement. At the wafer-level, the single tree
model had 32 terminal nodes and a depth of 7 – i.e., a not
so easy to read tree. In this case, the ensemble model
improves the single-tree’s error by ~ 20%.

Table 4 shows the three globally most important terms in
the lot- and wafer-level models. For rules, the coefficient
(Coef) values represent the change in predicted value if the
rule is satisfied (or “fires”). Support (Supp) refers to the
fraction of the data to which the rules applies. Thus, rule 1
of the lot-level model applies to ~27% of the data, and can
be interpreted as saying that lots for which
PE.2100.1000.LTH201 is not in {LEQUIP753, LEQUIP755}
and PE.3730.1000.LTH205 ≠ LEQUIP702 tend to have higher
yield.

Imp Coef Supp Lot-level Model Rule

100 1.88 0.27
PE.2100.1000.LTH201 ∉ {LEQUIP753, LEQUIP755} &
PE.3730.1000.LTH205 ∉ {LEQUIP702}

88 -1.49 0.52 PE.2975.1610.WET505 ∉ {CEQUIP702} &
PE.3940.1500.RI441 ∈ {EEQUIP704, EEQUIP706}

87 -1.82 0.20

PE.3760.4000.FRN333 ∈ {DEQUIP701, DEQUIP703} &
PE.3880.4350.ILTM444 ∈ {YEQUIP702, YEQUIP706,
 YEQUIP707, YEQUIP709} &
PE.4450.4200.CMP561 ∉ { PEQUIP703}

Imp Coef Supp Wafer-level Model Rule

100 1.58 0.25

PE.1550.1000.LTH203 ∈ {LEQUIP754} &
PE.3560.4720.ILT112 ∉ {YEQUIP704, YEQUIP706,
 YEQUIP710, YEQUIP711} &
PE.3880.4350.ILTM444∉ {YEQUIP702, YEQUIP706,
 YEQUIP707, YEQUIP709} &
TI.1850.1805.WETETCH13 ≤ 38620

89 -1.37 0.27
PE.3300.0400.WETCFF21 ∈ {SEQUIP702} &
PE.3670.4200.CMP552 ∉ {PEQUIP702} &
TI.3230.2115.INS711 ≥ 38620

71 -1.09 0.29
PE.2100.1175.ION621 ∉ {IEQUIP703} &
PE.2450.1040.WETS23 ∉ {CEQUIP704} &
PE.3970.4200.CMP554 ∉ {PEQUIP706, PEQUIP707}

Table 4: Top three rules based on global importance for the
lot- and wafer-level ensemble models for the yield data.

Similarly, rule 2 of the lot-level model applies to ~52% of
the data, and can be interpreted as saying that lots for which
PE.2975.1610.WET505 ≠ CEQUIP702 and PE.3940.1500.RI441
is in {EEQUIP704, EEQUIP706} tend to have lower yield.

Figure 3 shows the relative importance of the ten most
important input variables (out of the 680 given ones) of the
wafer-level model, as averaged over all predictions.
Variable PE.3880.4350.ILTM444, which is also present in the
top rules, figures prominently. An analysis (not shown) of
the partial dependence of yield on this variable, reveals that
wafers using YEQUIP707, or YEQUIP709, at step 3880.4350
tend to have noticeably lower-yield.

231

Figure 3: Input variable relative importance (global) for a
rule ensemble model built on the yield data.

The analysis of interaction effects can now be focused on
the smaller set of variables deemed most relevant. The
yellow bars in Figure 4 show the values of the statistic used
to test whether a specified variable interacts with any other
variable. The red bars correspond to the reference (null)
distribution values. Thus, the height of each yellow bar
reflects the value of the interaction statistic in excess of its
expected value under the null hypothesis of no interaction
effects.

The null (reference) distributions are computed using a
bootstrap method. The idea is to generate “random” data
sets that are similar to the original training data, repeatedly
compute the interaction statistic on these artificial data, and
compare the resulting values with those obtained from the
original data.

Figure 4: Total interaction strengths in excess of expected
null value for top-15 input variables.

Although the strengths of the interaction effects shown in
Figure 4 are not large, at least two of the fifteen most
influential variables appear to be involved in interactions
with other variables. After identifying those variables that
interact with others – e.g., PE.2100.1175.ION621 and
PE.2550.1000.LTH233 above, we need to determine the
particular other variables being interacted with.

The values of the two-variable interaction strength statistic
for PE.2550.1000.LTH233 are shown in Figure 5. Here one

sees that PE.2550.1000.LTH233 dominantly interacts with
PE.2997.0100.WETC755.

Figure 5: Two-variable interaction strengths of variables
interacting with PE.2550.1000.LTH233.

The detailed nature of the PE.2550.1000.LTH233 interaction
with PE.2997.0100.WETC755 can be further explored with
the corresponding partial dependence plot (see Figure 6).
In the absence of an interaction between these variables, all
PE.2550.1000.LTH233 partial dependence distributions,
conditioned on different values of PE.2997.0100.WETC755,
would be the same.

PE.2997.0100.WETC755 = DEQUIP701

 PE.2550.1000.LTH233

PE.2997.0100.WETC755 = DEQUIP702

 PE.2550.1000.LTH233

PE.2997.0100.WETC755 = DEQUIP703

PE.2550.1000.LTH233

Figure 6: Joint partial dependence on variables
PE.2550.1000.LTH233 (found earlier to be a relevant
input) and PE.2997.0100.WETC755.

PE
.3

88
0.

43
50

.I
LT

M
44

4
 PE

.3
67

0.
42

00
.C

M
P5

52

 TI
.3

25
0.

16
30

.W
ET

H
11

1

 PE
.3

77
0.

42
00

.C
M

P5
57

 PE

.3
56

0.
47

20
.I

LT
11

2
 PE

.1
14

0.
41

00
.F

R
N

S8
12

 PE

.3
94

0.
15

00
.R

I4
41

 PE

.1
20

0.
10

00
.L

TH
21

3
 PE

.3
30

0.
04

00
.W

ET
CF

F2
1

 PE
.3

97
0.

42
00

.C
M

P5
54

variable

R
el

at
iv

e
Im

po
rt

an
ce

PE
.3

88
0.

43
50

.I
LT

M
44

4

 PE
.3

67
0.

42
00

.C
M

P5
52

 TI

.3
25

0.
16

30
.W

ET
H

11
1

 PE

.3
77

0.
42

00
.C

M
P5

57

 PE
.3

56
0.

47
20

.I
LT

11
2

 PE
.1

14
0.

41
00

.F
R
N

S8
12

 PE

.3
94

0.
15

00
.R

I4
41

 PE

.1
20

0.
10

00
.L

TH
21

3
 PE

.3
30

0.
04

00
.W

ET
CF

F2
1

 PE
.3

97
0.

42
00

.C
M

P5
54

 PE

.2
10

0.
11

75
.I

O
N

62
1

 PE
.2

99
7.

01
00

.W
ET

C7
55

 PE

.2
30

0.
11

75
.I

O
N

09
82

 PE

.2
55

0.
10

00
.L

TH
23

3
 PE

28
50

13
10

IO
N

H
99

1

variable

In
te

ra
ct

io
n

St
re

gn
th

P
E

.3
88

0.
43

50
.IL

TM
44

4

 P
E

.3
67

0.
42

00
.C

M
P

55
2

 TI
.3

25
0.

16
30

.W
E

TH
11

1

 P
E

.3
77

0.
42

00
.C

M
P

55
7

 P
E

.3
56

0.
47

20
.IL

T1
12

 P

E
.1

14
0.

41
00

.F
R

N
S

81
2

 P
E

.3
94

0.
15

00
.R

I4
41

 P

E
.1

20
0.

10
00

.L
TH

21
3

 P
E

.3
30

0.
04

00
.W

E
TC

FF
21

 P

E
.3

97
0.

42
00

.C
M

P
55

4
 P

E
.2

10
0.

11
75

.IO
N

62
1

 P
E

.2
99

7.
01

00
.W

E
TC

75
5

 P
E

.2
30

0.
11

75
.IO

N
09

82

variable

In
te

ra
ct

io
n

St
re

gn
th

LE
Q

U
IP

71
4

 LE
Q

U
IP

70
3

 LE
Q

U
IP

70
1

 LE
Q

U
IP

75
2

 LE
Q

U
IP

75
3

 LE
Q

U
IP

75
4

 LE
Q

U
IP

75
5

LE
Q

U
IP

71
4

 LE
Q

U
IP

70
3

 LE
Q

U
IP

70
1

 LE
Q

U
IP

75
2

 LE
Q

U
IP

75
3

 LE
Q

U
IP

75
5

LE
Q

U
IP

71
4

 LE
Q

U
IP

70
3

 LE
Q

U
IP

75
2

 LE
Q

U
IP

75
3

232

Here one sees similar distributions when
PE.2997.0100.WETC755 takes the values DEQUIP701 and
DEQUIP702 (with one PE.2550.1000.LTH233 value not
represented in one case). The distribution for
PE.2997.0100.WETC755 = DEQUIP703 is fairly different
from the others, suggesting it captures the essence of the
interaction effect between these two variables: yield is
lower throughout in this case.

We can further visualize the above interaction using
waferMAP plots (see Figure 7). Figure 7(a) shows average
yield for the wafers using LEQUIP701 at step 2550.1000 or
using DEQUIP703 at step 2997.0100. Figure 7(b) shows
average yield for the “complement” set of wafers. A ~7.5%
yield loss is observed.

(a)

(b)

Figure 7: Wafer map representation of yield. Minimum
values are represented by darker colored die, graduating
to lighter die for higher values. In (a), average yield for the
373 wafers using LEQUIP701 at step 2550.1000 or using
DEQUIP703 at step 2997.0100. In (b), average yield for
the remaining 1672 wafers.

6. SUMMARY
Ensemble methods in general, and boosted decision trees in
particular, constitute one of the most important advances in
machine learning in recent years. In the absence of detailed
a priori knowledge of the problem at hand, they provide
superior performance. A number of interpretation tools
have been developed that, although applicable to other
algorithms, often are easier to compute for trees. With the
introduction of rule ensembles, the interpretability of the
ensemble model has been further significantly improved.
Together they provide a solid methodology that is
applicable to yield loss characterization.

REFERENCES
1. Hastie, T., Tibshirani, R. and Friedman, J. The

Elements of Statistical Learning – Data Mining,
Inference, and Prediction. Springer, 2001.

2. Breiman, L., Friedman, J. H. and Olshen, R. A., Stone,
C. J. Classification and Regression Trees. CRC Press,
1984.

3. Quinlan, J. R. C4.5 Programs for Machine Learning.
Morgan Kaufmann, 1987.

4. Freund, Y. and Schapire, R. Experiments with a new
boosting algorithm. In Machine Learning: Proceedings
of the Thirteenth International Conference (San
Francisco), Morgan Kauffman, 1996.

5. Friedman, J. Greedy function approximation: the
gradient boosting machine, Annals of Statistics, 29
(2001), 1189–1232.

6. Friedman, J. Stochastic gradient boosting. Technical
Report, Stanford University, 1999.

7. Tibshirani, R. Regression shrinkage and selection via
the lasso. J. Royal Statistics Society B., 58 (1996), 267-
288.

8. Friedman, J. and Popescu, B. E. Predictive learning via
rule ensembles. Technical Report, Stanford University,
2005.

BIOGRAPHY
Giovanni Seni is currently a Data Mining Engineer for
PDF Solutions, and Adjunct Faculty at the Computer
Engineering Department of Santa Clara University, where
he teaches a Pattern Recognition and Data Mining class.
Giovanni obtained an MS and PhD in Computer Science
from State University of New York (SUNY) at Buffalo.
Prior to joining PDF, Dr. Seni was a Member of the
Technical Staff at Motorola Labs
Said Akar has more than twelve years experience in
software design, programming and project management. He
is one of the key designers/developers of PDF’s
dataPOWER Yield Management System. He has also
performed extensive research in neural networks and image
processing. Dr. Akar earned his B.E. in Electrical
Engineering from the American University of Beirut, and
his M.S. in Applied Mathematics and Ph.D. in Electrical
Engineering from Florida Institute of Technology.
Edward Yang is a member of the YMS Applications
Engineering group at PDF Solutions. Before joining PDF
Solutions, he had experience with Philips Semiconductors
as CAD engineer, Product engineer and Yield engineer. Mr.
Yang received an M.S. degree from San Jose State
University and a B.S. degree from National Chiao Tung
University in Taiwan

233

